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New discrete mechamcs based on the assumption of the discrete time IS proposed. The 
discrete mechanics does not contam any contmuous dlfferentlatlon, but contams only 
difference quotients Resultmg discrete Hanultoman’s canomcal equations are smgle time-step 
difference equations and exactly conserve the Hamdtoman The canomcal equations give the 
numerIcal results more accurately than the Heun scheme and the 4th-order Runge-Kutta 
scheme t- 1988 Academic Press, Inc 

1 INTRODUCTION 

In the classical mechanics, the motion of a particle is predicted by Lagrange’s 
equations, or the canonical equations based on the Hamiltonian. These theories are 
constructed on the assumption that the coordinates and momentums of particles 
are functions of continuous time. We may call the mechanics continuous mechanics. 

Electronic digital computers stimulate the development of discrete mechanics 
where the time is regarded as discrete. Discrete mechanics have been proposed by 
Maeda [l], Holm et al. [2], and Gotusso [3]. All of the discrete mechanics use 
the functional CC<(t), . ..I. where G is, for example, the Lagrangian, and the 
argument function t(r) is the generalized coordinate of a particle, depending on 
time t. The methods proposed by Maeda [l] and Holm et al. [2] allow the 
variational derivative of G with respect to 5; that is to say, the methods include the 
expression aG/a& Thus we may call these as quasi-discrete mechanics or semi- 
discrete mechanics. The methods succeed in retaining without special difficulty 
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many features inherent to continuous mechanics. The methods, however, sometrmes 
fail to preserve mvariants, such as the total energy of the system with sufficient 
accuracy. In view of the numerical solution of the equations of mechanics, conser- 
vation of the invariants over a long time with sufficient accuracy is indispensable. 
The method proposed by Gotusso [3] does not use the variational derivative 
aG/a& but replaces aG/ag by a finite difference quotient. The method can easily 
produce a scheme which preserves invariants but fails to retain features inherent to 
continuous mechanics. In this paper, we propose a new discrete mechanics which 
satisfies exact conservation of the Hamiltonian and retains features inherent to 
continuous mechanics. The present discrete mechanics does not allow any 
variattonal derivative aG/@, but uses a variational difference quotient A,G in place 
0f acfag. 

2. VARIATIONAL DIFFERENCE QUOTIENT AND DISCRETE LAGRANGIAN 

We consider the functional G(e’, t2, . . . . rP), where 5’ is the argument function 
depending on time f, and 1( denotes the number of degrees of freedom. In 
continuous mechanics, the variation 6G of G IS given by 

W5) = W/J - (34) = f X1$ (2.1) 
,=I 

where <=(<I ,..., tV), q=(q’,..., q”), and 6<=(6<‘, . . . . 6{‘)=~-<. In obtaining 
Eq. (2.1), we have assumed that ]Sg’] 4 1. 

In order to construct the discrete mechanics, we do not allow the variational 
derivative aG/a& so that we need a substitute for the variatronal derivative. The 
method of constructing discrete mechanics is based on the following algebraic 
identity proposed by Gotusso [3]. 

dG(5 I= WI) - G(< ) 
= G(q', . . . . f - ', tf)-G(q', .., v"-~, yll'-', 5") 

+G(q', . . . . q'l-', rf--', ("I-G(q', . . . . ~'l-~, t"', 5") 

+G(q',..., q"-3,qp-2, t"-I,<")-G(q', . . . . ylp-3,t"2, t"-',t') 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

+ G(Y,I', . . . . Y/- ', q', 5" ', . . . . 5") - G(q', . . . . q'- ', t', t'+ ', . . . . 5") 

= G(q', q2. . . . . rip) - G(t', . . . . t'), (2.2) 
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where the second term of the right-hand stde IS canceled with the third term, and so 
on. We define the variational dtfference quotient A;,G by 

A:JJC)I,, =& [WV’, . . . . C’, $7 t”‘, . . . . 5”) 
5 

-G(r/‘, . . . . vi-‘, {‘, ;‘+I, . . . . <“)I. (2.3) 

The subscrtpt q means that the vartational difference quotient A,G(<)\, is evaluated 
by using values of G at 5 and q. Then Eq. (2.2) becomes 

bG(<) = i (rf - 5’) A,eG(<)I, = f 65’ A;zG(<)l,. (2.4) 
,=I 1=, 

Equation (2.4) corresponds to Eq. (2.1) m the continuous version. In Eq. (2.4) we 
do not require the condition [Sg’l < 1. This is an interesting feature that is different 
from the continuous mechanics based on Eq. (2.1). 

Figure 1 illustrates the variational difference quotient A,,G( rl when p = 3. Vectors 
1, 2, and 3 denote St’ A,I GI,,, St2 d;zGI,, and St3 ApGI,,, respectively. In Fig. 1 
there exist 3! ( =6) possible different pathes from (t’, r2, 13) to (q’, q2, q3). 

We consider the Lagrangian L(x, p) which contains the generalized coordinate 
x = (X,) x ?, . ., ,u/) and momentum p = ( pl, p2, . . . . p,) as the argument functions. 
The action J(N) IS given by 

N-I 

J(N) = 2 r”L(x”, p”), (2.5) 
?I=0 

3 

FIG 1. Illustration of LI~~G(~)~, when p = 3 
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where n and N are integers representing time and rn is the time interval given by 

gn=tn+‘-fn or p= i Tm- I+ to. 

m = 1 

L(x, p) m Eq. (2.5) is reduced to G(r) noted above, if we put ,~=2fand (<)= 
(x, p). In order to simplify notation, we introduce the operator O(n) by 

Q(n) G(5) = WC”), 

so that Eq. (2.5) becomes 

J(N) = 1 e(n) TL(x, I’). (2.6) 
?I=0 

If we put x + x + 6x = J’ and p -+ p + 6p = q, then J(N) + J(N) + U(N). Some 
books use q to represent the generalized coordinate [4]. We should note that in 
this paper q denotes the generalized momentum. We obtain 

N-I 

dJ(N) = c O(n 

N-1 

= C Q(n 
fl=O 

where A,L and A,,L are defined m the way similar to. (2.3). 6x and Sp are 
arbitrary, so that we obtain 

A.&(x, P)I,,.~ = 0 (z= 1 -Ay=x+Sx,q=p+Sp), (2.7) 

A,W, ~)l,..q = 0 (z= 1 -~y=x+Sx,q=p+Sp), (2.8) 

which may be called as the discrete Lagrange equations. 
We should note here that the order of argument functions (x, p) m Eqs. (2.7) and 

(2.8) are arbitrary. In other words, we can put (x, p) = (x,, p,, x2, p2, . ..). (x, p) = 
(Pz, -x2, PI, Xl, -11 and so on. Gotusso [3] also derived the discrete Lagrange 
equations using the Lagrangian L(x, i), where J? denotes the generalized velocity, 
while our discrete Lagrangian contains the generalized momentum p as the 
argument function. Our final goal is not to obtain the discrete Lagrange equation, 
but to obtain the discrete canonical equations from Eqs. (2.7) and (2.8). 
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3. DISCRETE CANONICAL EQUATIONS BASED ON 
BACKWARD TIME-DIFFERENCE VELOCITY 

We use the lag operator I defined by Q-9, p”) = (x”+ ‘, p”- ‘), and relate the 
Lagrangran L(x, p) wrth the discrete Hamiltoman H(x, p) by 

Ux,zJ)= f: PI 
(I--1)x, 
~- wx, P), (3.1) 

r=l ‘5 

where [denotes the identity operator, i.e., I(-?, p”) = (I”, p”). (I- /)x,/r m Eq. (3.1) 
1s the backward time-difference velocity. We hne up (x, p) in Eq. (3.1) m the order 

where I,, i,, . . . or I~ is equal to one value among 1 - f: In Eq. (3.2) we put x, to the 
left of p, 

Let us substitute Eq. (3.1) mto Eq (2.8), where y and 4 are arbitrary. We put 
(y, q) = I-‘(x, p) = (A?+‘, p”+ ‘) when (x, p) = (I”, p”) in Eq. (2.8) to obtain from 
the definition of Eq. (2.3) 

=lp,p~pp [L( . . . . Ir’?c,,lP’p,, . ..)-L( . ..) Ir’x,, p,, . ..)I. 
I I 

=l-,p’pp , 
I I [ 

(I~‘P,-p,)(l-~~I-‘-~,-H( . ..) /-‘pl ,... )+H( . ..) p ,,...) 1 
= 0. 

This equation gives 

A$, 
-=A,,w? P)I,~,q,~,-I,x,p, (l= 1 -f), 5 

where A, IS defined by 

A, =1--‘-I, 

(3.3) 

and A,H(x, p) is defined by the same way as in Eq. (2.3). Explicit expressions of 
Eq. (3.3) for f = 2 wrll be given by Eqs. (5.1) and (5.2), where we put (x, p) = 
(x”, p”). 
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Substitution of Eq. (3.1) mto Eq. (2.6) gives 

N-1 
J(N)= 1 Q(n) f p,(Z- I)x, - rH(x, p) 

[ 1 . (3.4) 
tZ=O ,=I 

If we use the identity I=f-‘+ (Z-IV’), the contribution of the term containing 
p,l.~, in Eq. (3.4) becomes 

N-1 

c Q(n) i [r-’ + (I- Ir’)](p,fx,) 
rr = 0 ,=I 

n=O ,=I 

where we have used the relation I-‘(pi/x,) = (I-‘p,)x,. The last term in the above 
equation plays no role, because 

N-l 

1 Q(n) f (~-~-‘MP,~x,) = C@(O) - @(WI ,$, (PJX,) 
n=O ,=I 

and the variations of the right-hand side are assumed zero in the classical 
mechanics. Thus Eq. (3.4) becomes 

N-l 

J(N)= 1 Q(n) f [(Z-lP)p,]x, -df(x,p) . 
> 

(3.5) 
PI=0 ,=I 

The reduction of Eq. (3.5) from Eq. (3.4) corresponds to the integratron by parts m 
the continuous version. 

Comparing Eq. (2.6) and Eq. (3 5) we put 

f (I- /r’)p, 
u-VP)= 1 r x, - w, P). (3.6) 

r=l 

We substitute Eq. (3.6) into (2.7), and put (y, q) = I- ‘(r, p) in Eq. (2.7). 
Equation (3.2) leads to 

A,P, --= A .,w, PM (Y.4)=I-‘(x3P) (i= 1 -f). (3.7) 
5 

Equations (3 3) and (3.7) constitute the discrete canonical equations. 
Equations (3.3) and (3.7) contain only (x, p) and I-‘(x, p) and contain no quan- 
tities such as 1(x, p), I-2(x, p), etc., so that Eqs. (3.3) and (3.7) are single-step 
difference equations for x and p. Since the right-hand sides of Eqs. (3.3) and (3.7) 
contain IP’(x,p) as well as (x, p), eqs. (3.3) and (3.7) are implicit schemes. 
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We show that the conservatton of Hamiltonian H(x, p) is assured automatically 
by Eqs. (3.3) and (3.7) as 

=,$, C(A,~,)A,+(A,P,)A,I H(x,p)l(.,,=,-l,,,,,. (3.8) 

Substrtutrons of Eqs. (3.3) and (3.7) into d,x, and A,p, in the right-hand side leads 
to A,H(x,p) = 0 which means the conservation of the Hamiltonian. 

4. DISCRETE CANONICAL EQUATIONS BASED ON 
FORWARD TIME-DIFFERENCE VELOCITY 

In this section we start from the Lagrangian based on the forward time-difference 
velocity as 

L(x, p)= f: p,(l-‘;z)x~-H(x, p). (4.1) 
I= I 

The order of (x, p) IS given by 

(x7 P) = (P,,? -XL,. Pi27 -y,], . . . . PI,, *vi, 1. (4.2) 

Substitutmg Eq. (4.1) into Eq. (2.8) and putting (y, q) = I-‘(x, p), we obtain 

AP, -=A,W, ~)l~~.~j=,-yx,p, (i=f-f). 
T 

From Eq. (4.1) we can obtain 

f (I-OP, UT PI = 1 - x, - wx, PI, 
r=l T (4.4) 

m a similar way to the reduction of Eq. (3.6) from Eq. (3.1). Substituting Eq. (4.4) 
mto Eq. (2.7) and putting (y, q) = l-*(x, p), we obtain 

-+= Ax,W, PI,, q,=,-l,x,pj (i=I-f). (4.5) 

Equations (4.3) and (4.5) constitute the discrete canonical equations, which are 
implicit single-step difference equations for x and p. Only the difference between 
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Eqs. (3.3) and (4.3) and the difference between Eqs. (3.7) and (4.5) lie in the order 
of (x, p). That 1s to say, Eqs. (4.3)and (4.5) are based on the order of Eq. (4.2), 
whtle Eqs. (3.3) and (3.7) are based on the order of Eq. (3.2). In the quite same way 
as Eq. (3.8) we can prove from Eqs. (4.3) and (4.5) that A,H(x, p) = 0 which means 
the conservation of the Hamiltoman. 

5. APPLICATIONS OF DISCRETE CANONICAL EQUATIONS TO TWO-BODY PROBLEM 

If we put (x,p)=(x;,p;,x;,p;) and I-‘(~,~)=(~~+‘,P’I+‘,x~+‘,~~+‘), 
Eq. (3.3) gives 

a + 1 
-VI --KY 1 = 

5 ?I+1 PI -P’I 
[H(x;+‘,p;fl,x;,p’;~-~(x;+‘,pp,~~;,P;~l, (5.1) 

p+l -xx” 
2 2 1 = 

r 
p;+l~p;[H(x;+‘,p;+‘,-~~+‘,p;+1)--(~;+’,P~+1,.~;+‘~P?)l~ 

(5.2) 

and Eq. (3.7) gives 

n+l 
-pl -p~=x,*+‘f,, [H(X’f”,pl,-r;, P;)--H(xl, Pcf,G P;)l, 

5 1 I 
(5.3) 

- p;+‘-P’;= 1 
T xn+’ 2 

-xx” [H(x’l”, py+‘, x;+‘, pg-fQq+‘, p;+‘, $9 P;)l. 
2 

(5.4) 

It is easy to show that Eqs. (5.1)-( 5.4) are accurate to the order of r. In order to 
improve the accuracy, we use the following equations m addition to Eqs. 
(5.1k(5.4). 

If we put (x, p) = (x;, p’;, x;, p;), Eqs. (3.3) and (3.7) gives 

,yN f 1 - -‘I” 
1 1 1 = 

T n+l PI -PY 
[H(x;+l, p;+‘,x;+‘, py+‘)-H(xl+‘, p;+‘,xy+‘, P’I)], 

(5.5) 
ST+ ’ 2 - x; 1 = 

5 tlfl 
P2 -P; 

[H(x; + ‘, p; + ‘, xy, P?) - wx;+ ‘7 P;, Xl? P1)1, (5.6) 

n+l PI -P t 1 - = 
T Xl 

ll+l-X” [H(x;+‘, pl;f’, x’l”, p;)- H(x;+‘, p;+‘, q, prf)], (5.7) 
1 

n+1 
P2 -P’; 1 = 

T x2 
fl+ImX” [W-G + ‘1 P;, x’I, P;) - H(x;, P;. $9 ~111. (5.8) 

2 
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If we put (x, p) = (P;, x:, P’;, x;), Eqs. (4.3) and (4.5) give 

p+‘-x” 
1 1 1 

= CH(p’l+’ , ~‘1, p;, x;) - H( P;, .q, P;, -$)I, (5.9) 
T n+l PI -PY 

y + 1 
2 -x; 1 

5 =p;+‘- p; 
[H(p;+‘,.u;+‘, p;+‘,.u’;)-H(p;+‘,.u;+‘, p’;,x;)], (5.10) 

PI+1 PI -P’I 1 - = 
5 XtZ+l-.p 

[H(p;+‘, AT;+‘, p;, .u;)- H(p;+‘, x;, p;, x;)], (5.11) 
I 1 

Ilt1 
P2 -PY 1 - = 

T xn+’ 2 

~,,[H(p;+‘,.u;+‘,p~+‘,,~;+‘)-H(p;+’,x;+’,p’z’+’,~;)] 
2 

(5.12) 

If we put (x, p) = (p;, x’;, p;, x;) Eqs. (4.3) and (4.5) give 

p+‘-xx” 
1 1 1 = 

T ?I+1 PI -P’I 
[H(p’;+‘, x;+‘, p;“, x;)- H(p;+‘, x;+‘, p;, x;)], (5.13) 

ntl 
x2 - x; 1 = 

T ??+I 
P2 -P’; 

[H(P;+’ , x;, p’l, x;) - H(p;, x;, ~‘l, ,y’I )I, (5.14) 

II+1 PI -p; 1 
= 

T xn+’ 1 

--x” [H(p;+‘, A$+‘, p;“, x7+‘)- H(p;+‘, x;+‘, p’t+‘,x;)], 
1 

(5.15) 

ntl 
P2 -p; 1 - = 

xn+’ _ I” CM P; + ‘, $j + ‘7 P;, ~7) - H( P; + ‘9 x;, p?, -v’f)l (5.16) 
5 2 2 

We calcululate 

[Eq.(5.1)+Eq.(5.5)+Eq. (5.9)+Eq. (5.13)]/4, 

[Eq.(52)+Eq. (5.6)+Eq. (5.10)+Eq (5.14)]/4, 

[Eq.(53)+Eq.(5.7)+Eq.(5.11)+Eq.(5.15)]/4, 

[Eq. (5 4) + Eq. (5.8) + Eq. (5.12) + Eq (5.16)]/4, 

and rearrange the order of (x, p) to (xl, p,, x2, p2) to obtain 

X”+‘-xn 1 ?7+1 
1 1 

5 =4(p;+’ 
_ p”) K CW-6, P:+‘? XT, py) - H(x:, p’l, $3 P?)], 

I k,m n 

(5.17) 

xn+‘-x; 2 1 
IIf’ 

r =4(p;+’ , _ p;) ,,c=, [H(,v?, PY, -6, P; + ‘) - H(xy, p’;, x;, p;)], 

(5.18) 
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which are symmetrical with respect to (x,, p,, x2, pz)” and (xi, p,, x2, pz)n+ ’ and 
are accurate to the order of r2. 

Let us define the Hamiltonian H(x, p) by 

1 
~(~~,~pl,x,,p,)=-(p:+p:)+cosx,-1+~p:cos~Y,, 2 2 

(5.21) 

where E is constant. If E = 0, the analytic solution of Eq. (5.21) exists. That is to say, 
p2 = const and (x, , p, ) in the phase space are given by Fig. 2. If E # 0, the orbits of 
particles become chaotic, and there exists no analytic solution. In the study of 
chaotic topology, we should eliminate carefully the error arising from the numerical 
computation. Otherwise the numerical error leads to false chaos. For example, if we 
put E=O and (x,, p,, x2, p2)rzo = (rc, 2,0,0), then H=O and the exact trajectory 
of particle “ 1” lies on the separatrix in Fig. 2. The wrong numerical computation, 

.: The lnltlal phase point 

of experiment 1. 

n : The lnltlal phase pon,ts 

of experiments 2 and 3. 

FIG 2 AnalytIcal traJectones of phase pomt m (x,, p,) space. when H = ~$2 + cos x, - 1 
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however, gives no exact trajectory and may lead to chaotic behavior of the particle. 
The present Hamiltoman-conserving scheme leads to no such false chaos, as shown 
below. 

Substitution of Eq. (5.21) into Eqs. (5.17)-(5.20) gives the Hamiltoman- 
conserving scheme as seen in Table I, which contains (x, p)“+ ’ in the right-hand 
side as an implicit scheme. We use the Euler scheme as the predictor; that is to say, 
we obtain (x, p)“’ ’ from (x, p)” using the Euler scheme. The (x, p)“+’ obtained 
thus are substituted into the right-hand side of the Hamlltonian-conserving scheme. 

The (x, p)” + ’ reevaluated are again substituted into (x, p)” + ’ in the right-hand 
side. The iteration is repeated until convergent (x, p)“+ ’ are obtained. 

We compare the present Hamiltonian-conversing scheme to the Heun scheme 
[5 J, the 4th-order Runge-Kutta scheme, and the 4th-order Runge-Kutta scheme 
with the Hamiltonian corrector. The Hamiltonian corrector in the last scheme will 
be explained in the Appendix. The Heun scheme given in Table I consists of the 
Euler scheme and the trapezoidal scheme. As in the case of the Hamiltonian- 
conserving scheme, the Euler scheme works as the predictor giving (x, p)“+ ’ from 
(x, p)“. The (x, p)“” obtained thus are substituted into the right-hand side of the 
trapezoidal scheme. 

EXPERIMENT 1. We put E = 0 in Eq. (5.21) and give the inittal conditton by 

c-u,, PI, -x2, Pz)r=o =(n, 2, 0, O), 

which leads to H = 0 and lies on the separatrx, as shown in Fig. 2. Figure 3 shows 
numerical trajetories m the rectangle surrounded by the broken line in Fig. 2. 

~ -.. 
H.C. ‘-\ Heun 4th. R.K. 4th R.K. with H.Co. 

'.. '. 
'... 

'\ 

x\ .A '\ 

“\ '\--- 
-. 

\\ 

\ i 
II) . '\ 

(2T.O) -‘(2n,o) (2rr,O) Pl 
Iv- Xl 

FIG 3 Experiment 1 TraJectorles near (Zn, 0) H = pf/2 fcos x, - 1, (x,, pl),=~ = (n, 2) 
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In Fig. 3, H.C. means the Hamiltonian-conserving scheme, 4th R.K. means the 
4th-order Runge-Kutta scheme, and 4th R.K. with H.Co. means the 4th-order 
Runge-Kutta scheme with the Hamiltonian corrector. The time intervals T in the 
time integration are listed in Table II. The time integratton is made from t = 0 to 
t = t,,,. The number of iteration refers to the usage of correctors in the H.C. and 
Heun schemes, and to the usage of the Hamiltonian corrector in the 4th R.K. with 
H.Co. scheme.The max IdHl in Table 11 denotes the maximum error of the 
Hamiltonian. 

The Hamiltoman-conserving and Heun schemes give the solutions accurate to 
O(T~), while the 4th-order Runge-Kutta with and without Hamiltonian corrector 
give the solutions accurate to U(r4). The time Intervals T in Table II make the error 
of the four schemes about the same order. 

If we dtsregard the rounding-off error, the Hamiltonian-conserving scheme gives 
exactly max (AHI = 0, so that max IdHl = 1.2 x 10 I5 m Table II comes from the 
rounding-off error. Experiment 1 was made by using numbers of double precision 
(16 figures). From Table II, we see that the Hamiltonian-conserving scheme gives 
the best trajectory in the phase space. 

EXPERIMENT 2. We put E = 0 in Eq. (5 21) and give the initial condition by 

t-x,, PI, .x2, Pz),=o = (001, 0, 0, O), 

which, as shown in Fig. 2, lies inside and near the separatix. In this case the analytic 
trajectory in the phase space (x, , pi ) is closed and the period of one cycle is about 
23.9. The numerical trajectories in the rectangle surrounded by the broken line in 
Fig. 2 are shown in Fig. 4. The time Interval T etc. are listed in Table III. We 
calculated the trajectories for t < t,,, = 1000, so that the phase point (x,, p,) turns 
round about 41 times. When the phase point obtained by the Heun scheme goes to 
the right beyond x, > 271, we use the periodic condition, i.e., when X, > 27c, we put 
XI -+x1 - 2n and pi + p, . When T > 0.1, we fail to obtain a stable numerical 
solution based on the 4th-order Runge-Kutta schemes without Hamiltonian 
corrector. Thts comes from the fact that the 4th-order Runge-Kutta scheme is an 

TABLE II 

Experiment 1 b,. P!. x2, PA=~ = (n, 2, 0, 0) 

Scheme 
Number of Behavior of trajectory 

T flnm lteratlon max IdHl near separatrix (x,, p,) = (2~. 0) 

HC 
Heun 
4th R K 
4th R K 

with H Co 

10-z 100 10 
10-Z 100 10 
10-I 100 i 

10-I 100 10 

12x 10-15 

33x10-5 
6 1 x 1O-6 

10x 10-s 

Approach (271.0) 
Go to right 
Return to left 

Approach (270) 
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FIG 4 Experiment 2 TraJectorles near (Zn, 0) H = ~$2 + cos x, - 1, (x,, P,),=~ = (0.01, 0) 

explicit scheme in contrast to the Hamiltonian-conserving and Heun schemes. From 
Fig. 4 and Table III, we may see that the best scheme is the Hamiltonian-conserving 
scheme. Experiment 2 and the following Experiment 3 were made by using numbers 
of single precision (8 figures). 

EXPERIMENT 3. We put E = 0.01 in Eq. (5.21) and give the initial condition by 

t-u,, Pl, -yz, Pz)r=o = (0.01, 0, 0, fi,, 

The time interval r etc. are listed in Table IV. We use the periodic condition, i.e., 
when x,.~ > 2~5 we put x,,* + x,,~ - 271. Figure 5 gives the Poincart maps indicating 
value of (xi, p,) when x2 =0 or 27~. From Fig. 5 we see that the Hamiltonian- 
conserving and Heun schemes give similar Poincare maps. The comparison of 
max IdHI in Table IV, however, means that the Hamiltonian-conserving scheme 
gives the trajectory more accurate than the Heun scheme. 

TABLE III 

Experiment 2 (x,. p,, x2, P*),=~ = (0.01, 0, 0, 0) 

Scheme 

H.C 
Heun 
4th R K 
4th R K 

with H Co 

Number of Behavior of trajectory 
r f nmi lteratlon max IdHI near separatrlx 

07 1000 10 17x 10-S Almost closed 
07 1000 10 7.6 x 1O-4 Chaottc 
01 1000 : 3 2 x Io-5 Nearly closed 

01 1000 10 47x 10-7 Closed 
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TABLE IV 

Experiment 3 (I,, p,, .x2, P~),=~ = (0 01, 0, 0, fi) 

Scheme 
Number of Behavior of 

T fm Iteration max IdHl trajectory 

HC 
Heun 

0.5 2Oca 10 23x 10m5 Chaotic 
05 2000 10 23x 10-j Chaotic 

.j 

P, ‘. 

t, 
1l.C. 

,T I’ 

Xl .1’. . 
.‘! 

FIG 5 Experiment 3 Pomcark maps H = (pf + p$)/2 + cos x, - 1 + 0.005 . pf cos x2, 
(X,,P,, *2,P2),=O=(001. 0, 0, fi,. 



100 ITOH AND ABE 

6. DISCUSSIONS 

Our method of constructmg the discrete mechanics uses no continuous differen- 
tiation and is based on the variational difference quotient d,G(c) defined by 
Eq. (2.3). The order of (<‘, t2, . . . . r”) or (x,, pI, x2, p2,. ., xr, pf) is arbitrary, as 
shown by Eqs. (3.2) and (3.4). Equations (3.2) and (4.2) means that there exist f! 
different possible ways of setting the order of (x,, p,, x2, p2, . . . . x~, pf). This lack of 
symmetry may be the shortcoming of our method. We, however, can change the 
order of (x,, p,, . . . . xr, pf) at each time-step. One of the ways of recovering the 
symmetry is to change the order at each time-step or, for example, at every ten 
time-steps. As shown by Eqs. (5.17)-(5.20), or the Hamrltonian-conservmg scheme 
in Table I, the recovery of symmetry increases the accuracy of the Hamiltoman- 
conserving scheme. 

The Hamiltonian-conserving and Heun schemes have the error of O(r3), and the 
4th-order Runge-Kutta scheme have the error of O(?). We should note that, as 
shown in Fig. 6, the error of the Hamiltoman-conserving scheme has a different 
feature from the other schemes. That is to say, if we disregard the rounding-off 
error, the phase point 5 = (x, p) given by the Hamiltonian-conserving scheme 
always lies on the equt-Hamiltonian plane, so that the phase point only has a phase 
error in the equi-Hamiltonian plane. Another scheme, such as the Heun scheme or 
the 4th-order Runge-Kutta scheme, has the isotropic error as shown in Fig. 6. The 
Hamiltonian-corrector which will be explained in the Appendix reduces the 
isotropic error to only a phase error. 

, Recjmn wh ere exact phase 

m 

cl y pomt exists. The radius 

/ 
1s proportional to 0(r3) 

(Heun) or O(r') (4th. R.K.). 

Heun and 4th R.K. 

FIG. 6 Error regons of the Heun, 4th-order Runge-Kutta, and Hamdtoman-conservmg schemes 
(if) = k P). 
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APPENDIX: HAMILTONIAN CORRECTOR 

The conservation of the Hamtltonian is not necessary assured in the Heun and 
4th-order Runge-Kutta schemes. The trajectory given by the schemes may be given 
by line between p’ ’ and 4” in Fig. 7, where 4 = (x, p). If we denote the accurate 
phase point by r” + ‘, then m order to obtain 5”’ ’ from p’ ‘, we need S< = 
5 n+l -(y+1, The geometrical constderation in the continuous version gives 

(A.1) 

where 6H=H(~“f’)-H(~f’)=H(~“)-H(~f’)=H(~’)-H(~CL). If the time 
mterval is suffkiently small, the approximate trajectory between $,+ ’ and 5” is 
almost parallel to the equi-Hamiltonian plane, so that SC is almost parallel to 
dH/d<. Therefore, from Eq. (A.l) we may put 

We replace aH/a< by the difference quottent A, H(c)l, defined as in Eq. (2.3) as 

(A.21 

Equation (2.3) means that in order to evaluate A,H(<)(,, values of H at the two 

-n+1 

4 

First approxmatlon First approxmatlon 

Second and subsequent Second and subsequent 

approxmatlons to AtH. approxmatlons to AtH. 

Equl-Hamltonran plane. Equl-Hamltonran plane. 

FIG 7 FIG 7 Illustration of the Hamdtoman corrector (5) = (x, p) Illustration of the Hamdtoman corrector (5) = (x, p) 
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points < and q are required. We put 5 = c” and q = p’ ’ as a first approximation 
and obtain 

CH(r;+ ‘9 ry;+‘, . . . . ry:‘:, F:+‘, . . . . r;, 

- WF;+ ‘, r;’ ‘, . . . . CT,‘, 5:, C:, 1, . . . . <;,I. (A.3) 

Using S< obtained from Eq. (A.2) we evaluate gn+ ’ = c$“’ ’ + St. In order to obtain 
more accurate A, HI,,, we replace <” in Eq. (A.3) by 5”’ ’ obtained above, 
reevaluate Se from Eq. (A.2), and reevaluate 5” + ’ from 5” + ’ = <” + ’ + St. We 
repeat the iteration until we obtain the convergent c”+ ‘. In all the stages of 
iteration we fix the values of r + ‘, so that 6H ( = H(t”) - H(e+‘)) in Eq. (A.2) 
does not vary. In other words, the Hamtltonian-corrector is the implicit scheme 
determining 5” + ’ from p + ‘. 

Let us give examples when the Hamiltonian is given by Eq. (5.21). In Eq. (A.3) 
we put c”=(x,, p,,.~~, pz)” and pf’=(-Y1, pL,X1, P,)n+l. Then Eq. (A.2) gives 

6x, =a A,,H=a 
cosxy-coq+’ 

x;-q+* ’ 

6x, =a A~,H=a;(~;+l)Z 
cosx;-cosx;” 

,y;-%;+I ’ 

n+l 
6p, =aA,,H=aP’+~t (1 +&COSX;), 

p;+p;+’ 
6p, =uA,,H=a 2 , 

where 
6H 

‘= lA,H(<)l*= 
H(x’l, p:, x;, p;)- H(X;+‘, PT+‘, XI;+‘, P;“) 

(A ~, H)* + (A., W2 + (Ap, H)’ + (Ap2H)* . 

If we replace (p; + ’ )’ in the second equation for 6x, by [(p’;)’ + (p; + L)2]/2, and 
replace cos x; in the third equation for 6p, by (cos x; + cos X; + *)/2, the four 
equations for 6x1, Sp,, 6x,, and 6p, become symmetric about c” and &?+ ‘. In 
obtaining the numerical results in the text, we have used the symmetric equations 
for bx, , etc. 
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